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Introduction
Hajek (1958, 1964) introduced Poisson sampling into the statistical literature. It is defined as a 

sampling design in which the sample units have unequal probabilities of selection,π i .  In addition 
the units in the population are independent and the sample size, n , is a random variable. Hajek 
proposed the unbiased estimator for the population total given by
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where yi =  the value of interest for unit i n x Xi e i, /π =  is the probability of selecting unit i  based 
on a covariate x ni ,  is the achieved sample size with expected sample size E n ne[ ] ,=  and X  is the 
sum of all xi  in the population.

Grosenbaugh (1964) introduced 3-P sampling into the forestry literature as an alternative to 
Poisson sampling. He used a slightly biased estimator defined by
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which will be referred to as the adjusted estimator.

with Ya
 and Yu

 and shown to be not as sensitive to such 
data points. Simulations on a small population illustrate 
these ideas.
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Abstract—The prevailing assumption, that for Poisson 
sampling the adjusted estimator Ya

 is always substantially 
more efficient than the unadjusted estimator Yu  , is shown 
to be incorrect.  Some well known theoretical results are 
applicable since Ya

is a ratio-of-means estimator and Yu
 

a simple unbiased estimator.  We formalize an additional 
realistic situation for high-value timber estimation for 
which Yu

 is more efficient.  Here y xi i≈ β  for all but a 
few units in a population for which yi

 is very large and 
xi  very small.  This is a common situation in estimating 

the net volume of high-value standing timber such as 
that found in the Pacific Northwest region of the United 
States.  Basically this means that Ya

 is sensitive to some 
types of valid data.  The generalized regression estimator 
and an approximate Srivastava estimator are compared 



USDA Forest Service Res. Note  RMRS–RN–4. 19982

The literature contains many examples showing that Ya  is more efficient than Yu  (Grosenbaugh 
1964, Schreuder et al. 1968, Furnival et al. 1987). Recently, occasions were observed where Yu  is at 
least as efficient as  .Ya

 These situations arose for high-value timber stands in the Pacific North-
west where an accurate estimate of net volume was desired. In order to obtain a good estimate of 
net volume in a stand, cutting down and destructively measuring trees for their actual volume 
may be desirable. In this case, Poisson sampling may be appropriate where an ocular estimate of 
net volume while the tree is still standing is the covariate xi .  Thus, sampling is proportional to 
estimated standing tree net volume. It can be very difficult to ascertain net volume on a standing 
tree and even experienced timber cruisers severely overestimate or underestimate net volume of 
some trees, particularly for larger trees. However, these estimates are valid data. Thus, there is no 
reason to remove these points from an estimate net volume. It is in situations where the ocular 
estimate of net volume ( )xi  is very small and the actual net volume ( )yi  is large that problems 
with the adjusted estimator arise.

Literature Review
Poisson sampling is a strategy based on using unequal probabilities of selection for each of the 

elements in the sample. If the sample membership indicator Ii  is given by 
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for each i N= 1 2, , ,  then

 P Ii i[ ]= =1 π

and

 P Ii i[ ] .= = −0 1 π

The probability that any sample s  is chosen under Poisson sampling is given by
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In Poisson sampling the sample size n  is random with mean E n i
N

i[ ] = ∑ =1 π  and variance 
V n i

N
i i[ ] ( ).= ∑ −−1 1π π

Under Poisson sampling the variance for the unadjusted estimator given in [1] is given by
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The adjusted estimator, given in [2], was proposed by Grosenbaugh (1964). This estimator is 
slightly biased, but generally has a smaller variance than the unadjusted estimator. The approxi-
mate variance for the adjusted estimator is given by
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Since its introduction, Ya  has been considered more efficient than Yu  (Grosenbaugh 1964, 
Schreuder et al. 1968, Furnival et al. 1987). Schreuder et al. (1968) compared the efficiency of the 
adjusted and unadjusted estimators using two highly correlated populations. When the correlation 
coefficient ( )ρ xy  between xi  and yi  exceeded .95, they found the ratio of Monte Carlo estimated 
variances,V Vu a/ ,  for the unadjusted and adjusted estimators to range from 4.20 to 9.38 for one 
population and 6.74 to 12.17 for the other population. The differing ratios were generated using 
different sampling fractions. Van Deusen (1987) states that the 3-P adjusted estimator has nearly 
optimal properties under a regression superpopulation model and can be expected to perform 
well except under extreme deviations for this model. Schreuder (1987) describes a situation where 
the model between xi  and yi  violate the superpopulation model. The results in Van Deusen (1987) 
and Schreuder (1987) indicate that Ya  can perform poorly, but the performance of Yu  in these situ-
ations is undocumented.

Furnival et al. (1987) and Van Deusen (1987) note that Ya  can be rewritten as

 
 (  /  ) ,Y Y X Xa u u=  [6]

where Xu  is defined analogously to Yu  in [1] and X  is the sum of the covariate values. Hence, the 
comparison in efficiency of the ratio-of-means estimator Ya

 and the unadjusted estimator of the 
population total Yu  is applicable. Thus, the relative efficiency of Ya

 to Yu
 is
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where ρ = Cov X Y
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and covariate respectively. Then , Yu  is more efficient than Ya  provided ρ < 1
2
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These results seem straightforward but do not explain why Yu  is more efficient than Ya  for popula-
tions like the one described later. It can be shown that if the following minimum list of assumptions 
is met then the adjusted estimator will be at best as efficient as the unadjusted estimator.
 1. n Ne

2 ≥ ,  where ne  is the expected sample size and N  is the total number of trees in the 
population.

 2. There exists at least one point y X ek k≥ +  with βxk  small relative to yk  for at least one k.

 3. The coefficient β  is such that β 2
2

2 1
≤

−
X

N n( )
.

 4. X X− ≈1 .

 5. ( ( ) ) .β βX X X− + ≈1 2 2 2

The proof is given in the appendix.
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Alternative estimators exist for Poisson sampling. Ouyang and Schreuder (1993) describe an un-
biased Srivastava estimator for Poisson sampling in a forestry setting. The Srivastava estimator
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has zero variance ifπ αi iy .  If pps sampling is used, the Srivastava estimator can be approximated 
by the following ratio estimator
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(Ouyang et al. 1992) where y xi i
* = +α β  and Y yi

N
i

* *.= ∑ =1  This ratio estimator is not an unbiased 
estimator, but Ouyang and Schreuder (1993) found the bias to be small provided a linear relation-
ship exists between y  and x.

Särndal (1980,1982) gives the asymptotically unbiased generalized regression estimator
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Van Deusen (1987) shows that Ya  and Yu  are special cases of the  ,YGR  where Yu  uses no model 
and Ya  uses a ratio model with variance proportional to xi

2 .

This paper includes these alternative estimators to demonstrate which of these estimators might 
be a good choice in similar survey situations.

Data Description and Results
For a data set described by Johnson and Hartman 

(1972), ocular estimates of net volume ( )= xi  and the 
net volume obtained by destructive sampling ( )= yi  
are given. The size of the data set was N = 131.  For 
the simple linear regression model R2 0 9505= .  and
y x= 10469. .  Figure 1 shows the net volume y  versus 
the ocularly estimated net volume x.  This data set 
contains one outlying point where xi  is very small in 
relation to yi .  Given the high correlation of the model 
and the results of Schreuder et al. (1968), the adjusted 
estimator was expected to produce standard deviations 
which were substantially smaller than the unadjusted 
estimator. The first line of table 1 contains the true 
standard deviation as a percentage of the total net 
volume for the population of N = 131  units. 

Figure 1. Net scale volume – Net cruse volume 
relationship
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Table 2. Magnitudes of terms in equations [5] and [6].

Population T1  T2  T3  T4  T5

N = 131  1.381x1011 1.304x109 1.381x1011 3.308x109   1.017

N = 130  3.396x109 1.289x109 3.396x109 3.235x109 1.017

Table 1. Population standard deviations as a percentage of Y.

Population Ya
 Yu

N = 131  108.832 108.699

N = 130  3.840 13.641

The true variance for the population, N = 131,  is slightly larger for the adjusted estimator than 
for the unadjusted estimator. The cause of this is the one outlying point where xi  is very small 
in relation to yi .  This produced a very small probability of selection,π i ,  in conjunction with an 
average value of yi .  By deleting this point from the data set, the standard deviation values in the 
second line of the table are produced ( ).N = 130  These values fall in line with the traditional belief 
that the adjusted estimator is more efficient than the unadjusted estimator. To better understand 
the cause of this situation, the variance equations for the adjusted and unadjusted estimator need 
to be studied. For the unadjusted estimator the variance is given as
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2= ∑ = .  For the adjusted estimator the approximate variance is 

given by

 
V Y

y Y
n

V n

n
T T Ta

i

i e ei

N

(  )  [ ](
( )

) ( ) ,= − + = −
=
∑

2 2

2 3 4 5
1

1
π  [12]

where T T T Y n T V n ne e3 1 4
2

5
21= = = +, / , ( ) / .and  The magnitudes of each term of equations [11] and 

[12] are listed in table 2 for the data set with and without the outlier data point included. The first 
line of the table indicates that terms T1  and T3  dominate the variance equations when the outlier 
data point is included. When T3  is multiplied by the variable sample size correction term, T5 , the 
adjusted estimator can be less efficient than the unadjusted estimator.

Table 3 contains iterated standard deviations as a percentage of the total net volume after 200,000 

simulations using the two data sets previously mentioned. As the results indicate, YSra2  is substan-
tially more efficient than either Yu  or Ya  for N = 131.  The reason YSra2  is more efficient is that when 
the outlier data point is selected yk  and yk

*  divided byπ k  produces very large overestimates of 
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Table 3.  Iterated standard deviations as a percentage of ∑ =i
N

iy1 .

Population Ya
 Yu

 YSra1
 YSra2

 YGR

N = 131  114.094 111.328 115.353 3.568 3.780
N = 130  3.151 13.835 3.164 3.479 3.708 

theY.  Since these terms appear in the numerator and denominator, the effect of the overestimate 
is reduced. The generalized regression estimator,  ,YGR  also shows a considerable increase in effi-
ciency over Ya  and  .Yu  The reason YGR  is more efficient is because when the outlier point is selected
yk k/ ,π α π/ ,k  and β πxk k/  all produce very large overestimates. When the terms ∑ =i

n
i1 α π/  and

∑ =i
n

i ix1 β π/  are subtracted from ∑ =i
n

i iy1 / ,π  the effect of the outlier point is reduced. Estimator
YSra1  is as inefficient as Ya  and Yu  because there is no compensation for outlier points as occurred 

for YSra2  and  .YGR  It should be noted that 200,000 simulations were not sufficient to fully stabilize 
the estimates of Ya  and  ,Yu but due to limited computing time no attempt was made to perform 
additional simulations.

For N Y Y Y Ya Sra Sra GR= 130 1 2,  ,  ,   and  are about equally efficient.

Conclusions and Recommendations
Since its introduction, Ya  has been considered more efficient than  .Yu  In situations where an out-

lier point xk  is small and βxk  much less than the corresponding yk  value, it is reasonable to expect
Ya  to be less efficient than  .Yu  This occurs, for example, when ocular estimates of net volume are 

used to predict actual net volume. YSra2  and YGR  perform quite well in the presence of these types 
of outlier observations. YGR

 would generally be a better choice than YSra2
 since it has a reliable vari-

ance estimate (Schreuder and Ouyang 1992) and is asymptotically unbiased and efficient.
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Appendix
Schreuder et al. (1968) give the true varianceV Y Yu u(  )  of  and an approximate variance of 
 , (  )Y V Ya a  as
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We wish to show that under certain conditions V Y V Ya u(  ) (  ).≥  For the adjusted estimator the vari-
able sample size factor can be approximated by
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since for even moderately sized populationsV n ne( ) ≈  because
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If this condition holds, these two terms may be dropped from [7]. All that remains to be shown is 
that under the simplifying assumptions and a given population model
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Some simplifying assumptions need to be made. A widely used model in forestry is

 y x ei i i= +β  [10]

with E ei[ ] ,= 0 E e xi i[ ]2 2 2= σ  with E e ei j[ ] = 0  for i j≠ .  In order to formalize conditions under 
whichV Y V Ya u(  ) (  ),* ≥  consider the following alternative model

 y x ei i i= +β  [11]

for i k k N= − +1 2 1 1, , , ,    with

 y X xk k= = and 1  [12]

with E e E e xi i i[ ] , [ ] ,= =0 2 2 2σ  and E e ei j[ ] = 0  for i j≠  for all i N= 1 2, , .  In [12] X  is the mean of 
the x  values in the population and xk = 1  is used for simplicity. Any case where xk > 0  and βxk  is 
sufficiently small compared to yk  will produce the same results. The model given in [11] and [12] 
is common in forestry when ocular estimation has to be used (D. Bruce - personal communication). 
The results which follow can be generalized to a population where more than one outlier exists, 
but for the sake of simplicity only one outlier will be considered. Using models [11] and [12] in 
conjunction with equation [9], we have
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Due to the assumed error structure, this reduces to
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Ignoring the error terms, it is sufficient to show
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Equation [16] can be rewritten as
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assuming X X− ≈1 .  For the data set discussed in this paper, xi  and yi  are both estimates of net 
volume so β ≈ >> −1 12, and ( ).X N ne

 If the following minimum list of assumptions is met, then 
the adjusted estimator will be at best as efficient as the unadjusted estimator.

 1. n Ne
2 ≥ ,  where ne  is the expected sample size and N  is the total number of trees in the popula-

tion.

 2. There exists at least one point y X ek k≥ +  with βxk  small relative to yk  for at least one k.

 3. The coefficient β  is such that β 2
2 1

≤
−

X
N ne( )

.

 4. X X− ≈1 .

 5. ( ( ) ) .β βX X X− + ≈1 2 2 2
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